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ABSTRACT

The purpose of this study is to compare the overall economy of
transporting large volumes of payload into a typical low altitude orbit
using three-stage chemical vehicles and two-stage chemical-nuclear
vehicles.

In comparing these two types of transport vehicles, take-off weight
and desired annual transport volume are allowed to vary. Vehicles of
each type are sized to represent a span of take-off weights yielding a
span of payload capabilities. These transporters or orbital carriers
are typical of their class and are based on the velocity requirements
for a typical low altitude orbit. Operational assumptions, concerning
mission reliability and pad time, establish firing rates and launch pad
requirements for a given annual transport volume.

The total operating cost can be determined by combining these data
with specific cost data on the vehicles, facilities, and operations. The
total operating cost can be converted into specific cost in dollars per
pound of payload delivered into orbit, and it is this parameter which is
used to indicate the economy of the transportation systems under con-
sideration.

Under the given assumptions the results show a similar economy of
operation for the three-stage chemical vehicle and the two-stage chemical-
nuclear vehicle. To make the comparison more comprehensive, the effect
of increasing the reliability and the total development cost of the
chemical-nuclear two-stage vehicle is studied.
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I. ZINTRODUCTION

A large amount of effort is being expended on long-range planning
of program and vehicle requirements. This study attempts to supply
some answers to long-range planning from the viewpoint of space flight
economics. Specifically, this study attempts to compare the over-all
economy of three-stage chemical vehicles and two-stage chemical-nuclear
vehicles transporting large volumes of payload into a typical low alti-
tude orbit. An attempt has been made to keep the assumptions as accurate
as possible; however, a large number of assumptions are required and a
rather complex procedure is needed to investigate this problem. There~
fore, the assumptions regarding reliability and development cost, which
seem to be those most subject to change, are presented as parameters.
The procedure used to yield a comparison is given in the Appendix II. This

procedure has been programmed on the LGP-30 computer, and the data shown
here were obtained from this space flight economy procedure.

II. DISCYSSION
A. APPROACE

In comparing these two types cf transport vehicles, take-off weight
and desired annual transport volume are ailowed to vary. Vehicles of
each type are sized to represent a span of take-off weights yielding a
span of payload capabilities. These transporters or orbital carriers
are typical of their class and are based on the velocity requirements
for a typical low altitude orbit. Operational assumptions, concerning
mission reliability and pad time, establish firing rates and launch
pad requirements for a given annual transport volume.,

No consideration is given to the possibility that payload size
and/or time interval of payload placement in orbit may be overriding
factors. Also, no recovery or re-use of any stage of either vehicle
is considered. These factors may develop into important considerations,
but for simplicity and expediency they are not considered in the com-
parison.

B. ASSUMPTIONS

The assumptions can be divided logically into the categories of
mission and vehicle, operational, and cost; but since the object is to
compare a chemical-nuclear system and an all chemical system, these
categories must be applied to each propulsive type. Therefore, the
assumptions for the three-stage chemical vehicle will be discussed, and
then the points which are peculiar to the two-stage chemical-nuclear
vehicle will be given.



1. Three-stage Chemical Vehicle
a. Vehicle Assumptions

(1) The velocity capability of the vehicle was taken
to be 9,300 m/sec, plus a flight performance reserve of 300 m/sec. This
velocity corresponds approximately to a circular 96-minute orbit at an
altitude of 307 nautical miles.

(2) Refer to Table 1 for specific impulse and pro-
pellant.

(3) Refer to Table II for a weight breakdown of the
stages. .

(4) No recovery of booster stages is included.

b. Operational Assumptions

{1y The transport volume requirement {weight of pay-
loads per year transported into orbit) is used as an.independent variable.
Transport volumes of 1.0, 3.0, 10.0, and 20.0 million pounds per year
are selected to cover the span of possible requirements on which a com-
parison may be based. These transport volumes can be converted into
a given program or programs, depending on the need. All that is re-
quired for this study is to have a common basis from which the two pro-
pulsive types can be compared.

(2) An operational period of ten years is used in
this investigation. The 10.0 million pound take-off weight vehicle has
an initial operational date of 1970, while all other chemical vehicles
enter into the first year of program operation in 1966.

(3) The vehicle size is the other main independent
variable. The following take-off weights are used; 0.3, 1.0, 3.0, and
10.0 million pounds.

{4) These individual vehicles are assumed to be in
a different development phase, thus having a different reliability when
entering into the first year of operation. To determine the initial
reliability for the first operational year, the number of vehicles of
the respective take-off weights which have been flown must be assumed.

Take-off Weight - lbs Accumulated Flights
300,000 200
1,000,000 25
3,000,000 9
10,000,000 1




(5) The mission reliability (successful delivery
of payload into orbit) is shown in Figure 1. This is an empirical re-
lationship which is considered typical for the vehicles under consider-
ation. Only reliability curve Number 1 is used for the three-stage
chemical vehicles. Refer to Tables IV-IX and Figures 4, 5, and 9.

c. Cost Assumptions

(1) Figure 2 shows the variation in production
cost as a function of production number for the period 1964 through
1975. This plot is valid for a unit dry weight of 100,000 pounds. A
weight correction factor for other unit dry weights can be obtained
from Figure 3. This unit dry weight corresponds to the hardware weight,
WS, shown in Table II.

(2) Figure 3 shows an estimate of the variation of
the development cost with stage dry weight.

(3) The vehicles are assumed to be transported over
a distance of 1,000 miles at a cost of $1/1b.

. (4) The propellant cost per pound of mixture is
assumed to be $0.03/1b for LOX/RP and $0.20/1b for LOX/LHZ.

(5) Other cost assumptions are vehicle launch cost,
range cost, and facility and GSE cost. These costs are functions of
pad time per launch, annual firing rate, and take~off weight. The re-
lationships used in estimating these costs are given in Appendix II.

2. Two-stage Chemical-Nuclear Vehicle

a. Vehicle Assumptions

(1) Refer to Table I for specific impulse and pro-
pellant.

(2) Refer to Table III for a weight breakdown of
the stages.

(3) Other assumptions are identical to those made
for the three-stage chemical vehicle.

b. Operational Assumptionms

(1) The vehicle sizes and initial operational dates
are as follows:



Take-off weight - lbs Initial operational date

1,200,000 1968
2,400,000 1970
10,000,000 1972

(2) The number of accumulated flights at the
initial operational date is, in each case, assumed to be five.

(3} Each of the mission reliability curves shown
on Figure 1 is used for the two-stage chemical~-nuclear vehicle. The
variation of this assumption illustrates its effect on total operating
cost and makes allowance for the possibility of superior reliability
for the two-stage vehicle. Refer to Figures 5, 6, 7, and 9 through 17.

{4y Other assumptions are identical to those made
for the three-stage chemical vehicle.

c. Cost Assumptions

(1) For the nuclear stage, Figure 2 is used only
to obtain the production cost of the fuselage, (W3), and the shielding.
The production cost of the propulsion system, (W4), is assumed to be
$200/1b. This assumption for the propulsion system is held constant
for each vehicle size class with no cost decrease for production learning
assumed. The cost of the reactor fuel is considered separately as
$8000/1b.

(2) The development cost for the nuclear stage is
assumed to be as follows:

Take-off weight (million 1lbs) 1.2 2.4 10

Engine cost (miilion §) 150 250 400
Reactor cost {(million $) 150 160 250
R&D GSE cost (million $) 150 175 200
Total (million $) 450 585 850

(3) The propellant cost is assumed to be $0.20/1b.

(4) Other assumptions are identical to those made
for the three-stage chemical vehicle.

C. OPERATIONAL DATA

Under the stated assumptions, certain operational features
result. The annual transport volume and mission reliability establish




an annual firing rate, and the annual firing rate establishes a pad

time requirement from which the number of pads required can be deter-
mined. These two major operational features, annual firing rate and
launch pad requirements, are shown in Tables IV and V and Figure 4.
Tables IV and V show the launch rates for each consecutive year of
operation as a function of take-off weight and annual transport volume.
Figure 4 shows the launch pad requirement for the first and last operat-
ional years as a function of take-off weight and annual transport volume.
The decrease in firing rate for each consecutive year of operation is
due to increased mission reliability; the decrease in pad requirement
between the first and last operational years is due to the decreasing
pad time per launch,

The pad requirement for the last operational year is approximately
one-tenth of that for the first year's operation. This means that through-
out the course of the operational period several pads are not being used.
The cost of this inefficiency in pad utilization is a relatively small
portion of the total operating cost; however, an actual program would
probably be carried out by building up to a fairly constant number of
pads and making maximum use of them. Such an approach would result in
a steady increase in the annual transport volume instead of a constant
yearly value.

ITII. RESULTS

A distribution of the total operating cost for each propulsive
type and for each annual transport volume is given in Tables VI through
XITII. The data for this cost distribution is based on reliability curve
Number 1 of Figure 1 and is included so that individual comparisoms
between cost items for each propulsive type may be made. From these
tables it can be seen that the indirect operating cost, comprised of
GSE and facilities, range cost, and vehicle development, is lower for
the two-stage chemical-nuclear vehicle., Although individual items
of GSE and facility for the chemical-nuclear vehicle cost more, the
total cost of these items for a given program is less, because the pad
requirement is less than that for the three-stage chemical vehicle. The
range cost is less for the chemical~-nuclear vehicle because the annual
firing rate is lower than that required for the three-stage chemical
vehicle. The vehicle development costs are comparable for each pro-
pulsive type.

Figures 5, 6, and 7 compare the direct operating cost of each pro-
pulsive type using the three reliability curves shown in Figure 1 for
the two-stage chemical-nuclear vehicies only. The direct operating
cost of the chemical-nuclear vehicles is much less than that for the
three-stage chemical vehicles at the lower transport volumes. At the
higher transport volumes (10 x 10® 1b/yr and 20 x 10° ib/yr) there is
little difference in direct operating cost except for the higher take-
off weights. The decrease in direct operating cost of the chemical-
nuclear vehicle due to increase in reliability can also be obtained



from these figures.

The percentage increase in total operating cost of the chemical-
nuclear vehicles due to increasing the basic development cost by factors
of two and three is shown in Figure 8. These data are based on relia-
bility curve Number 1 of Figure 1. For the larger transport volumes
the effect of doubling and tripling the basic development cost is
relatively small.

Figures 9 through 17 summarize the results of the study by pre-
senting the total operating cost in $/1b of payload in orbit for the
selected annual transport volumes as a function of take-off weight.
For the chemical-nuclear vehicle these figures show the effect of in-
creasing development cost and reliability.




IV. CONCLUSIONS

Based on the stated assumptions and calculation procedure, the
following conclusions are made:

1. There is little difference in total operating cost of the two
propulsive types for the larger amnual transport volumes (10e106 1b/yr
and 20.106 1b/yr). This is true even when the reliability and/or develop-
ment cost of the chemical-nuclear vehicle is increased.

2. The smaller annual transport volumes (1-106 1b/yr and 3-10° 1b/yr)
show a greater divergence in total operating cost for the two propulsive
types. Increasing reliability tends to offset increasing development
cost. It is difficult to weigh reliability against development cost,
but under the assumptions used, development cost appears to have a more
significant effect on total operating cost.

3. The two-stage chemical-nuclear vehicle requires an annual firing
rate of approximately one-half that required for the three-stage chemical
vehicle. This lower firing rate could be very important if pad times
cannot be reduced in the manner assumed. The decrease in pad requirements,
and therefore, real estate, could also be very important.

4, The results indicate that operational requirements (payload
size, rendezvous, firing rate, real estate, etc.), rather than economy,
will determine the most desirable vehicle type and size.

5. Based on the assumptions used in this study, it appears that
the minimum specific transportation cost of payloads, into low altitude
orbits, is about $150/1b.




PROPULSION DATA FOR TYPICAL 3-STAGE CHEMICAL
AND 2-STAGE CHEMICAL - NUCLEAR VEHICLLS

TABLE 1
FROTULOION | TaR-O"F | smace L PROPELLANT
3 Stage 300,000 I 290 mean LOX/RP
Chemical '
11 425 vacuum LOX/LHZ
III 425 vacuum LOX/LHZ
1,000,000 I 290 mean LOX/RP
I 425 vacuum | LOX/LL,
III 425 vacuum LOX/LHZ
3,000,000 I 290 mean LOX/RP
IT 425 vacuum LOX/LHZ
III 425 vacuum LOX/LHZ
10,000,000 I 290 mean LOX/RP
I1 425 vacuum LOX/LHZ
111 425 vacuum | LOX/L
2 Stage 1,200,000 I 290 mean LOX/RP
Chem~Nucl
I1 900 vacuum LHZ
2,400,000 I 290 mean LOX/RP
I 900 vacuum | 2
10,000,000 1 290 mean LOX/RP
11 900 vacuum | Lo




WEIGHT DATA FOR TYPICAL 3-STAGE CHEMICAL VEHICLES

TABLE 11
*Take-off Weight, WO‘ 300,000 | 1,000,000| 3,000,000 {10,000,000
STAGE 1
Cutoff Weight, wc 148,600 495,400 1,486,000 | 4,954,000
Propellant Weight, W6 7.8 156,454 520,686 | 1,555,674 { 5,162,130
b )
Hardware Weight, WS 20, 300 64,000 174,500 467,000
STAGE 11
Stage Take-off Weight, Wo 123,240 415,400 | 1,268,900 | 4,370,000
Cutoff Weight, Wc 49,050 165,400 505,000 | 1,740,000
Propellant Weight, W6 7.8 76,276 256,650 782,340 | 2,681,080
bl H
Hardware Weight, WS 8,340 26,510 73,700 204,200
STAGE II1
Stage Take-off Weight, WO 38,620 132,150 413,800 | 1,485,600
Cutoff Weight, wc 15,380 52,590 164,800 591,000
Propellant Weight, W6 7.8 23,893 81,674 255,016 911,940
Hardware Weight, W_ 2,612 8,460 24,060 69,350
PAYLOAD
Gross Dry Payload, W1-+ W2 12,125 42,020 134,720 504, 300
Guidance, Control,
and Instrument Package, Wj 1,745 2,200 2,930 4,300_
Total Payload, w1 10, 380 39,820 131,780 500,000
Growth Factor, M 28.9 25.1 22.8 20.0

*All weights are in pounds.




WEIGHT DATA FOR TYPICAL 2-STAGE CHEMICAL - NUCLEAR VEHICLES

TABLE IIT
*Take-off Weight, W 1,200,000 2,400,000 10,000,000
STAGE 1
Cutoff Weight, W, 600,000 1,150,000 5,000,000
Propellant Weight, W6 7.8 620,000 1,277,070 5,075,000
3 3
Hardware Weight, Ws 80,000 96,730 425,000
STAGE II
Stage Take-off Weight, Wo 500,000 1,036,200 4,500,000
Cutoff Weight, W, 197,000 371,130 1,770,000
Propellant Weight, W6 7.8 308,000 679,200 2,755,000
Fuselage Weight, W3 35,000 70,000 275,000
Propulsion Weight, W, 20,000 40,000 100,000
Shielding Weight 2,000 2,000 3,000
PAYLOAD
Gross Dry Payload, W, + W, 133,500 250,630 1,374,000
Guidance, Control and
Instrument Package, W, 3,500 3,500 4,000
Total Payload, wl 130,000 247,130 1,370,000
Growth Factor, M 9.23 9.72 7.30

*All weights are in pounds.
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APPENDIX I.

sp

LIST OF SYMBOLS

Specific Impulse (sec)

Take-off Weight (1b)

Cutoff Weight (1b)

Unusable Propellants and Gas Residuals (1b)
Maximum Usuable Propellant Residuals (1b)
Expected Propellant Consumption (1b)

Dry Structure Weight (1b)

Total Payload (1b)

Vehicle Guidance and Control Equipment, Instrumentation
(1b)

Fuselage and Equipment (1b)
Propulsion System and Accessories (1lb)
Wo/w1 - Growth Factor

Amnual Transport Volume (Weight of payloads per year
transported into orbit - 1lb/yr)

Launch Operations Cost ($ per launch)

Pad Time per Launch (days)
Annual Firing Rate

Fixed Cost, Three-stage Chemical Vehicle (§)
Fixed Cost, Two-stage Chemical-Nuclear Vehicle ($)

Correction Factor
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APPENDIX I. LIST OF SYMBOLS (Continued)

CR Range Cost (§ per launch)

(CG + CF) Ground Support Equipment and Facility Cost, Three-
c stage Chemical Vehicle ($ per launch pad)

(CG + CF) Ground Support Equipment and Facility Cost, Two-
n stage Chemical-Nuclear Vehicle ($ per launch pad)

R&D Research and Development

GSE Ground Support Equipment
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APPENDIX II. COMPUTATIONAL METHOD

1. Vehicle Production Costs - The variation of production cost
versus accumulated production number is shown in Figure 2 with time as -
a parameter. This figure is plotted for a unit dry weight of 100,000
1b. A correction factor for weights other than 100,000 1b is given
as the lower curve in Figure 3.

2. Propellant Costs - The propellants are assumed to cost $0.03/1b
for LOX/RP, $0.20/1b for LOX/Hp, and $8000/1b for nuclear fuel. It
"is assumed that liquid H, will cost $0.20/1b when used used with a nuclear

stage.

3. Vehicle Transportation Costs - The average transportation cost
is assumed to be $1/1b for that weight transported a distance of 1000
miles.

4. Launch Operations Cost - The cost covering checkout, pad
operation, and actual launching is assumed to be given by:

- LN Vv
CL- 365 (a +b wo ) $ per launch
where

W
t = 1%9 + §9 (pad time per launch)

o
u

5'106 (fixed cost,three-stage chemical vehicle)

10-106 (f£ixed cost, two-stage chemical-nuclear vehicle)

»
[

b= 104 (correction factor)

5. Direct Operating Costs - The summation of produétion, pro-
pellant, transportation, and launch operation: costs gives a direct
operating cost.

6. Range Costs -~ The costs pertaining to the flight test range

(also needed for operational flights) are estimated by the use of the
following equation:

= (0.2 + Zﬁ_‘t) 106 $ per launch
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7. Ground Support Equipment and Facility Costs - The costs charge-
able to ground support equipment and facilities are calculated from:

(CG + CF) = 2(10"106 + 104 V wo) $ (three-stage chemical vehicle)
c

(cG + CF)n 2(15-106 + 10 \/7,1'0')

$ (two-stage chemical-nuclear vehicle)

This gives a cost per launch pad.

8. Development Costs - The costs of the vehicle development pro-
gram are given by the upper curve of Figure 3 for the three-stage chemical
vehicle. The development costs peculiar to the two-stage chemical-
nuclear vehicle are given by the following:

Take-off weight (million 1b) 1.2 2.4 10

Engine cost (million $) 150 250 400
Reactor cost (million §) 150 160 250
R&D GSE cost (milliom §) 150 175 200
Total (million §) 450 585 850

9. 1Indirect Operating Costs - Range costs, ground support equip-~
ment and facility costs, and development costs make-up the indirect
operating costs.

10. Reliability Considerations - With the exception of development,
each of the above costs will be increased by an assumed reliability
factor. Using a given reliability curve, the required number of
vehicles per year for a desired transport volume is obtained by iteration.
The launch rate, in turn, affects the launch pad requirement. These
assumed reliability factors are shown as a function of accumulated
launches in Figure 1.

11. Average Operating Costs - After the individual costs have
been adjusted for an assumed mission reliability, a cost per pound of
payload into orbit can be determined. The total operating cost for a
program divided by the amount of payload delivered gives an average
specific total operating cost in $/1b for the carrier vehicles. The
payload costs are not considered in this study.
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